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Nonvolatile phase-change random-access memory (PCRAM) is re-
garded as a leading candidate for next-generation electronic 
memory hierarchy (1–6). It utilizes the pronounced electrical re-
sistance difference between the amorphous and crystalline states 
of chalcogenide phase change materials (PCMs) to encode digital 
information (4). Large fragility, i.e., strong deviation of the tem-
perature dependence of atomic dynamics from Arrhenius behav-
ior (7), is an essential property of PCMs that guarantees fast and 
reversible phase transitions between the two states at elevated 
temperatures, and yet good thermal stability at room tempera-
ture, making PCRAM one of the most promising candidates to 
compete with dynamic random access memory (DRAM) and Flash 
memory (8–10). However, to achieve “universal memory” (1) 
with PCRAM, subnanosecond operation is needed to compete 
with cache-type static random-access memory (SRAM) (5). Proper 
thermal design of PCRAM devices allows for an ultrafast RESET 
process through amorphization, while the SET process remains as 
the bottleneck, because the crystallization kinetics of PCMs is crit-
ically limited by their fundamental properties, such as nucleation 
rate and growth speed. Several strategies have been tried to im-
prove the SET or writing speed of the current Ge2Sb2Te5 (GST)-
based PCRAM devices by increasing the crystallization speed of 
GST, but the typical writing time is still of tens of ns. A very fast 
SET speed of ~500 ps (11) was achieved on a ~30 nm pore-like 
GST-based PCRAM device with the aid of a constant low voltage. 
However, because a ~10 ns long preprogramming treatment was 

needed prior to every SET operation, the real overall writing 
speed remains insufficient for sub-ns cache-type memory appli-
cations. 

The abundance of four-fold ABAB rings (A = Ge/Sb, B = Te) in 
the amorphous state (12, 13) has been proposed to be the mech-
anism for fast crystallization in GST, as the ABAB rings are the 
smallest structural units in the recrystallized cubic rocksalt phase, 
and two such structural motifs can form a cube. We call this struc-
tural order a crystalline precursor, as it shares the same feature 
of the corresponding crystalline structure. Crystalline precursors 
are related to subcritical embryos, but do not necessarily imply 
the presence of quenched-in crystal nuclei. Upon heating to ele-
vated temperatures (e.g., 600 K), atoms in the amorphous state 
become highly mobile, and rings and cubes fluctuate in and out 
constantly. A tremendous number of atomic configurations over 
a long incubation period need to be sampled before the critical 
nucleus is obtained (14–16) due to high frequency of formation 
and dissolution of crystalline precursors. Even in ab initio molec-
ular dynamics simulations, the crystallization time at 600 K of 
models containing several hundreds of atoms can fluctuate con-
siderably, varying from several hundreds of picoseconds to many 
nanoseconds, reflecting the stochastic nature of the incubation 
process (16–19). To alleviate this, (11) introduced a long (~10 ns) 
pretreatment to preseed nuclei inside the amorphous matrix, 
such that the ensuing SET operation becomes primarily crystal 
growth. Instead, our goal is to achieve ultrafast crystallization by 
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Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving 
subnanosecond high-speed cache-memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing 
speed, originating from the stochastic crystal nucleation during the crystallization of amorphous Ge2Sb2Te5. Here, we 
demonstrate an alloying strategy to speed up the crystallization kinetics. The Sc0.2Sb2Te3 compound we designed allows a writing 
speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization 
stems from the reduced stochasticity of nucleation through geometrically matched and robust ScTe chemical bonds that stabilize 
crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of 
cache-type PCRAM technology to boost the working efficiency of computing systems. 
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altering the intrinsic nucleation properties of the phase-change 
material itself to enable real sub-ns memory writing. 

Our design principle was to find materials with enhanced ther-
modynamic driving force to stabilize crystalline precursors, in this 
case robust ABAB rings and cubes, to drastically extend their life-
time during the incubation period. We also desire as much as pos-
sible geometric conformability between the crystalline precursor 
in the amorphous phase and the corresponding crystalline coun-
terpart, to reduce the interface energy. These two traits together, 
i.e., the dynamical stability and structural similarity, are projected 
to dramatically decrease the energy barrier for crystal nucleation 
(20, 21). In order to accomplish this goal, we introduced an alloy-
ing element to promote geometrically-matched and high-
strength chemical bonds to stabilize the crystal precursors. The 
most widely used PCMs are GeSbTe compounds along the 
pseudo-binary line between GeTe and Sb2Te3 (22, 23). Here, we 
used Sb2Te3 as the parent phase to avoid the additional complex-
ity of tetrahedral motifs found in amorphous GeTe and GeSbTe 
that arise from homopolar Ge-Ge bonds formed during fast 
quenching (24–26), because such motifs may hinder the crystalli-
zation into the octahedrally coordinated rocksalt phase. Anti-
mony telluride is a prototype topological insulator with ordered 
quintuple layers connected via van der Waals forces, and it can 
also be made in a metastable rocksalt state (Fig. 1A) for phase 
change application (27). Alloying elements such as transition met-
als into antimony telluride, e.g., Ti0.4Sb2Te3 (TST), can lead to su-
perior crystallization speed as compared to GST (28), but the 
segregated triple-layered TiTe2 nano-lamellae (29) prevent fur-
ther reduction of crystallization time into sub-ns scale, stemming 
from the fact that none of the crystalline titanium tellurides 
match with the cubic rocksalt lattice structure of Sb2Te3. 

Therefore, we performed a systematic materials screening of 
other transition metal tellurides (TMTs). We used two essential 
criteria to select the transition metal alloying element that best 
promotes high-fidelity crystalline precursors. The crystal-like 
structural motifs in the amorphous state should be (i) geometri-
cally-matched as much as possible to the rocksalt crystalline prod-
uct Sb2Te3, and (ii) further stabilized by the added transition metal 
alloying element if its incorporation brings in chemical bonds of 
high strength. The first criterion requires a local cubic geometry 
with coordination number of 6 and bond lengths close to 3.0 Å 
(Fig. 1A). For the second criterion, we regarded the melting tem-
perature (Tm) and cohesive energy (Ecoh) as the key indicators. 
From all the TMTs with Tm > 900 K listed in Fig. 1A, we identify 
only six suitable candidates, i.e., TM = Sc, Mn, Zn, Y, Cd, and Hg, 
that satisfied the geometric conformability criterion (fig. S1). Cu-
bic rocksalt scandium telluride Sc2Te3 is of particular interest, as 
it also has a high content of intrinsic atomic vacancies (1/3) on the 
cation-like sublattice, same as rocksalt Sb2Te3 (Fig. 1B and fig. S1). 
We calculated the Ecoh for the six rocksalt TMTs with density func-
tional theory (DFT) simulations (30). The more negative value of 

Ecoh corresponds to stronger TM-Te bonds (Fig. 1A). This ruled out 
MnTe and HgTe, as their Ecoh is unfavorable with respect to that 
of base-alloy rocksalt Sb2Te3 (-0.06 eV/atom). For the other four 
transition metals, DFT simulations on the rocksalt TM-Sb2Te3 re-
vealed that Zn or Cd atoms resulted in too severe lattice distor-
tions in the crystalline phase. Yttrium is not ideal because the 
local motifs around Y atoms in the amorphous state can no longer 
keep the (defective-) octahedral coordination, which may hinder 
the crystallization kinetics (fig. S2). 

Scandium is therefore singled out as the most appealing alloy-
ing element according to the above criteria. We further cross-
checked the chemical stability of Sc2Te3 by employing a more so-
phisticated method before synthesizing Sc-incorporated Sb2Te3 
alloys. We performed crystal orbital Hamilton populations (COHP) 
analysis, which dissects electronic density of states (DOS) into 
bonding (stabilizing) and antibonding (destabilizing) interactions 
(30). The antibonding contribution of both rocksalt Sb2Te3 and 
Sc2Te3 at the Fermi level EF is marginal (Fig. 1B), indicating good 
stability of both systems. In Sb2Te3, we found an antibonding re-
gion right below EF. In contrast, Sc2Te3 had all the filled bands up 
to the EF making stabilizing contributions, suggesting that Sc2Te3 
is more robust as compared to Sb2Te3. In this comparison both 
compounds are in exactly the same geometrical configuration 
(Fig. 1B), including the random distribution of atomic vacancies 
and lattice parameter, for the DFT simulations and COHP analyses 
(fig. S3). 

Then we alloyed small concentration of scandium into anti-
mony telluride via magnetron sputtering (30). In general, too little 
scandium leads to poor thermal stability of the amorphous phase, 
while too much scandium makes our device fabrication difficult. 
Balancing the two led to the composition of Sc0.2Sb2Te3 (SST) for 
thorough experiments. The SST thin film we obtained was amor-
phous with a crystallization temperature of ~170°C (Fig. 2A), sim-
ilar to that of GST. We conducted electrical transport experiments 
on both SST and GST films upon heating, which gave similar sheet 
resistance profiles, as well as three resistance windows, same as 
the GST, corresponding to three solid phases of SST, namely 
amorphous, cubic and hexagonal (31). We performed transmis-
sion electron microscopy (TEM) experiments to access the de-
tailed structural properties of the SST film. The bright-field (BF) 
image (Fig. 2B) and the corresponding selected area electron dif-
fraction (SAED) pattern (Fig. 2C) of the SST film annealed at 270°C 
show a homogeneously polycrystalline morphology with numer-
ous nano-sized crystal grains, suggesting that SST is a nucleation-
dominant material. The SAED pattern was indexed as rocksalt 
type, following the selection rules for crystal structures (32). The 
rocksalt structure was further confirmed with high-resolution 
TEM images (Fig. 2, D to F) of three (coexisting) specific crystal 
grains (boxed in Fig. 2B). In situ heating TEM experiments reveal 
the successive structural transformations from amorphous to 
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rocksalt and then to hexagonal phase in the SST film (fig. S4). Be-
cause the temperature window of rocksalt SST is comparable to 
that of GST, reversible and rapid phase transitions between the 
amorphous and rocksalt states are expected in SST-based PCRAM 
device through the design of a suitable heating profile. Just like 
GST, the equilibrium hexagonal phase needs to be avoided in the 
SET process because the transition to this phase is a relatively 
slow process, and the melting of the rigid hexagonal phase entails 
a high energy cost (27). 

We fabricated SST based T-shaped PCRAM devices by using 
0.13 μm node complementary metal-oxide semiconductor tech-
nology (inset of Fig. 3A) (30). GST, Sb2Te3 and TST devices of the 
same size were also made to enable a direct comparison. We al-
tered the voltage pulses from ns to ps width with the magnitude 
ranging from ~1.0 V to ~5.5 V, and applied them to the devices 
(fig. S5). As the magnitude of voltage pulse increases, the SET 
speed of all the devices becomes faster (Fig. 3A and fig. S6), with 
SST being one order of magnitude faster than GST at all voltages. 
The fastest SET process for the GST device needs ~10 ns to com-
plete, while that of the SST device requires only ~700 ps. This SET 
speed is at the limit of PCRAM, as no preprogramming is needed 
for SST, and is already comparable to the resistance switching 
speed based on the so called threshold switching effects (33). For 
the latter the low-resistance state disappeared instantly with 
electric field removal (33), whereas the transition in our SST is 
permanent, and the low-resistance crystalline state is very stable. 
The SST device showed a cyclability of ~105 under the sub-ns 
switching conditions (Fig. 3B). Up to ~4 × 107 cyclability was 
achieved by reducing the voltage bias while increasing the pulse 
width to tens of ns (fig. S7). 

The sub-ns crystallization speed of SST originates from the 
presence of the ~4% Sc added into the Sb2Te3 base alloy, as the 
fastest SET speed of the Sb2Te3 device is ~6 ns. For Sb2Te3 the ab-
sence of complexity through the introduction of Ge already im-
proves the crystallization kinetics as compared to GST, but is still 
insufficient to drive the SET speed down to sub-ns level (fig. S6). 
We performed density functional theory based molecular dynam-
ics (DFMD) simulations at finite temperatures (30) to elucidate 
the crystallization mechanism in SST, and in particular the role of 
Sc. We studied the structural properties of the amorphous mod-
els, which we generated using the melt-quench scheme (12, 25). 
Four-fold rings are the dominant structural motif in amorphous 
SST (Fig. 4A), just like GST. More importantly, we found that every 
Sc atom was involved in at least one four-fold ABAB ring (A = 
Sc/Sb, B = Te), whereas ~80-90% of Sb atoms formed ABAB rings. 
This structural feature provides an essential ingredient for the 
high nucleation rate in SST. If the structural motif in the amor-
phous phase differs considerably from the crystalline phase, such 
as in the growth-driven PCM Ag4In3Sb67Te26 (AIST), where five-
fold rings dominate, the nucleation rate is very low (34, 35). This 
structural dissimilarity originates from both the parent compound 

Sb2Te and the alloying Ag/In (35, 36). 
We found at elevated temperature ~600 K, GST and SST show 

distinctly different behaviors: Ge(Sb)-Te-Ge(Sb)-Te rings break 
and reform frequently and rapidly with a very short lifetime on 
the order of ~5 ps (fig. S8); in stark contrast, the robust Sc-Te-Sc-
Te rings stay intact for over 50 ps (Fig. 4, B and C). The long life-
time of ScTe rings stems from the stronger ScTe bonds, and once 
two such rings get close to form a cube, the latter does not break 
easily (Fig. 4B and fig. S9). This behavior is obviously different 
from that of GST, where a sizeable crystalline cluster made of 
many connected cubes needs to form to prevent fast dissolution 
(14), and even an embedded crystalline seed containing as many 
as 58 atoms (in a 460 atom GST model) disappears rapidly at ~600 
K (16). Such an embedded seed had to be fully fixed, to enable 
quick crystallization through crystal growth in GST (37). In con-
trast, a crystalline precursor made of ScTe cubes (~50 atoms in a 
4×4×4 SST supercell made of 428 atoms) can stand robust against 
thermal fluctuations at ~600 K in the absence of artificial con-
straint, serving as the center for subsequent crystallization (Fig. 
4D). In normal crystallization, a wide distribution of subcritical nu-
clei of varying sizes develops, and these embryos fluctuate in and 
out, with only a minute fraction of them evolving into critical nu-
clei (34, 38). In SST, the long lifetime of crystalline precursors due 
to the strong ScTe bonds allows for a quicker build-up of precur-
sors on the verge of becoming nuclei or even quenched-in nuclei 
during phase change operations, which leads to a superior SET 
speed in PCRAM devices. The particular ScTe seed we introduced 
in our simulations is not necessarily already a nucleus above the 
critical size, because the latter is difficult to determine quantita-
tively from DFMD simulations due to reasonable statistical sam-
pling being computationally too expensive. Nevertheless, the size 
of the critical nucleus of SST should be smaller than that of GST, 
as the two compounds share the same interatomic distance, sim-
ilar diffusion properties (the bulk diffusivity of both SST and GST 
is of the order of 1×10−10 m2/s at ~600 K), and yet SST crystallizes 
so much faster in our simulations (38). 

To utilize SST for practical use, data retention at room tem-
perature, RESET speed and power consumption are also im-
portant aspects. As stated before, ~4 at% of scandium added to 
antimony telluride already improved the thermal stability of the 
amorphous SST to compete with GST (Fig. 2A). The data retention 
of the RESET state in SST device is estimated to be ∼87°C for 10 
years, very similar to that of GST (~82°C for 10 years) (fig. S10). 
This stability is due to suffocated diffusion in SST at low tempera-
tures. However, scandium addition should not be excessive so as 
not to make the growth kinetics too sluggish at elevated temper-
atures for the desired crystallization. Regarding the RESET speed 
and energy, sub-ns RESET operation was achieved in SST device 
(fig. S6), and the RESET energy was one order of magnitude lower 
than GST device due to the easier melting of rocksalt SST (fig. 
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S11). We believe several strategies, such as scaling down the de-
vice size and fine-tuning the material composition, can improve 
the device performance further (39, 40) to rival SRAM, thus open-
ing up the possibility to develop a truly universal memory. Our 
work is an example demonstrating the benefit of approaching the 
problem from materials design, taking advantage of known phys-
ical metallurgy principles to control nucleation and growth. 
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Fig. 1. Materials screening. (A) Screening geometrically-matched TMTs with high-strength TM-Te bonds for rocksalt 
Sb2Te3. Only TMTs compounds with Tm > 900 K are listed, in the format of the periodic table of elements. Six candidates 
(TM = Sc, Mn, Zn, Y, Cd, and Hg) with CN = 6 and a ≈ 6.00 Å match closely with the rocksalt structure of Sb2Te3. (B) A 
3×3×3 rocksalt Sb2Te3 supercell model. Atomic vacancies, Sb and Te atoms are rendered with hollow circles, yellow and 
blue spheres. The left and right part of the –COHP curve indicates the antibonding (destabilizing) and bonding 
(stabilizing) interaction, respectively. 
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Fig. 2. Rocksalt SST. (A) Temperature dependence of the sheet resistance of ~300 nm-thick GST and SST films with the same 
heating rate of 10°C/min. Resembling GST, amorphous SST can be sequentially crystallized into metastable rocksalt (RS) and 
equilibrium hexagonal (HEX) phases. (B) TEM picture of ~20 nm-thick SST film annealed at 270°C. (C) The corresponding SAED 
pattern of (B). (D to F) High-resolution TEM images of three specific crystal grains framed in (B), project along 

111 , 011 , and 001 zone axes, respectively. 
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Fig. 3. PCRAM switching properties. (A) Voltage dependence of the SET 
operation speed for SST and GST PCRAM devices with the same geometry. 
Inset shows a schematic of the device structure with the pulse signal applied 
to transform the phases in the mushroom-shaped active area right above the 
bottom electrode contact (BEC). (B) Cyclability: the SST device can repeatedly 
perform ultrafast SET (@ 5.7 V) and RESET (@ 7.5 V) operations up to 105 
cycles with 800 ps pulses. The RESET and SET states are stable with 
sustainable resistance ratio. 
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Fig. 4. DFMD simulations. (A) Primitive rings analysis of amorphous SST and GST. (Inset) Fraction of Sc and Sb atoms 
(resp. Ge and Sb atoms) involved in at least one ABAB ring. (B and C) The stability of ABAB rings in SST and GST at ~600 
K. (D) Crystallization process of SST with a crystalline embryo in the middle at ~600 K. This seed expands steadily and 
quickly with time to occupy much of the box within 600 ps, in contrast to the rapid dissolution of a similar-sized seed 
in GST (16). No constraint is applied to the ScTe seed during the DFMD simulations at ~600 K. The cutoff distance for 
bonds is chosen as 3.4 Å, corresponding to the first valley of the pair correlation function at the same temperature, 
and is slightly larger than the maximum bond length (3.3 Å), determined by using sophisticated bonding analysis 
methods for GeTe/SbTe bonds at 0 K (26, 27, 41), to deal with thermal fluctuations at ~600 K. 
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